프N NETWORKS

Specification Number:

Title:
Functional Design Specification for MV Overhead Lines
Revision Number:

1

Issue Date:

August 2013

Latest Review Date: February 2018

(ESB Specifications are subject to change, this specification version shall only be used for the purpose/project for which it was issued by ESB to you)

Approved for issue:

Specifications Manager

ESB Networks

[^0]
History of Revisions

Date	Revision Number	Author	Summary of Change
August 2010	Revision 0	Overhead Networks	First Issue
August 2013	Rev 1		Specification number added, front cover modified, Approval sheet added. Technical content unchanged

Note:

This specification will be reviewed at minimum before the Latest Review Date, but may also be reviewed in the interim. Consequently the "Latest Review Date" does not indicate that this particular version of the Specification is current. Accordingly, only the version of the specification issued by ESB to the user for the particular purpose/project should be used.

ESB Technical Specification Approval

1.0 Introduction 6
$2.0 \quad 100 \mathrm{~mm}^{2}$ ACSR 7
2.1 Conductor Data 7
2.2 Mechanical Design Details 8
2.3 Erection Sag Charts 10
$3.0 \quad 150 \mathrm{~mm}^{2}$ AAAC 13
3.1 Conductor Data 13
3.2 Mechanical Design Details 14
3.3 Erection Sag Charts 16
4.0 Clearances 19
4.1 Clearances Within the Span 19
4.2 Vertical Ground Clearance. 19
5.0 Electrical Design 21
5.1 Earths 21
5.2 Switching Points 21
5.3 Surge Arresters 21
5.4 Voltage Regulator 21
5.5 Auto-Sectionaliser 21
5.6 Triple-Pole Switch 21
5.7 Recloser 21
6.0 Pole numbering, Danger Notices, Bird Diverters and Network Records 22
6.1 Pole Numbering. 22
6.2 Danger Notices 22
6.3 Bird Diverters 22
6.4 Network Records 22
Appendix 1: Pole Duties 23
Appendix 2: Staying Requirements 24
Appendix 3: Crossings and Conflicts 26
A3.1 Crossings 26
A3.2 Conflicts 27
A3.3 Phone Lines 27
A3.3.1 Crossings 27
A3.3.2 Approaches 28
A3.3.3 Parallel Runs 29
A3.3.4 Earth Separation 29
A3.4 Overhead Power Line 30
A3.5 Building Conflict 32
A3.6 Public Lighting Conflicts 33
A3.7 Vegetation 33
Appendix 4 Waterway Crossings 34
Appendix 5 Danger Notices 37
Appendix 6 List of Material Specifications 38

1.0 Introduction

This specification outlines the design rules for constructing 20 kV overhead network with:

- $100 \mathrm{~mm}^{2}$ ACSR (Aluminium Conductor Steel Reinforced), known as "Racoon"
- $150 \mathrm{~mm}^{2}$ AAAC (All Aluminium Alloy Conductor), known as "Mulberry"

$2.0100 \mathrm{~mm}^{2}$ ACSR

2.1 Conductor Data

The table below lists the main characteristics of $100 \mathrm{~mm}^{2}$ Aluminium Conductor Steel Reinforced (ACSR), which ESB specify for 3-phase 20kV networks. This conductor is also described as $92 \mathrm{~mm}^{2}$ ACSR in some ESB documentation because the actual cross-sectional area of the conductor is almost $92 \mathrm{~mm}^{2}$.

Table 1 Conductor Data

Description	Value
Codename	Racoon
Overall Diameter	12.27 mm
Cross Sectional Area	$91.98 \mathrm{~mm}^{2}$
Stranding / Wire Diameter Aluminium	$6 / 4.09 \mathrm{~mm}$
Stranding / Wire Diameter Steel	$1 / 4.09 \mathrm{~mm}$
Weight/km	$303 \mathrm{~kg} / \mathrm{km}$
Ultimate Tensile Strength	27.05 kN
Design tension	$11.75 \mathrm{kgf} / \mathrm{mm}{ }^{2}$
Target span	100 m
AC resistance at $65^{\circ} \mathrm{C}$	$0.447 \Omega / \mathrm{km}$
Shunt susceptance, B	$5.6 \times 10^{-6} \mathrm{~S} / \mathrm{km}$
Series reactance, X	$0.41 \mathrm{H} / \mathrm{km}$
Maximum conductor temperature	$65^{\circ} \mathrm{C}$
Thermal rating for maximum conductor temperature of $65^{\circ} \mathrm{C}$ at ambient air temperature of $5{ }^{\circ} \mathrm{C}$	385 A
Thermal rating for maximum conductor temperature of $65^{\circ} \mathrm{C}$ at ambient air temperature of $25^{\circ} \mathrm{C}$	293 A
Short-circuit rating for initial conductor temperature of $65^{\circ} \mathrm{C}$ and short-circuit duration of 0.1 seconds	17.7 kA
Short-circuit rating for initial conductor temperature of $65^{\circ} \mathrm{C}$ and short-circuit duration of 1 seconds	5.6 kA
Short-circuit rating for initial conductor temperature of $65^{\circ} \mathrm{C}$ and short-circuit duration of 2 seconds	4.0 kA

Technical requirements for this conductor can be found in the latest edition of ESB Specification 16374, titled: "Aluminium Conductor, Steel Reinforced (ACSR) for Overhead Lines"

2.2 Mechanical Design Details

See Appendix 1 for details on pole duties such as IMP (Intermediate Pole), LAP (Light Angle Pole), etc. Maximum span length is determined by a number of factors including:

- Pole strength
- Foundation strength
- Required ground clearance
- Avoidance of clashing between phases

Maximum span lengths have been calculated for design conditions such as maximum conductor temperature and ambient conditions such as air temperature and wind speed. The results are summarised in the table below. The overhead line must be designed so that span lengths are within limits set out in Tables 2, 3 and 4 and 5.

Table 2 Maximum wind span for unstayed poles based on pole strength and foundation strength

Pole Type				Maximum Foundation Depth based on pole		
	Maximum wind span for unstayed pole based on foundation strength					
Height (m)	Top Diameter (cm)	ESB Material Code		(m) strength	Poor Ground	Average Ground
10	18	1212219	2	109	50	86
11	18	1212260	2.2	119	66	113
11	20	1212262	2.2	153	70	121
11	22	1212263	2.2	190	75	129
12	20	1213315	2.3	165	72	135
13	20	1213363	2.3	166	67	126

The ESB material codes for wood poles are included in Table 2. Technical details for each pole size can be obtained from ESB specification 16196.

Loamy wet soil or loose sandy soil is considered to be poor ground for foundations. Ground consisting of clay or firm gravel provides average or better than average foundations. The wind span is the sum of half the span lengths the pole is supporting, as shown in Fig. 1. The Maximum wind span for poles planted in poor ground can be increased by installation of sleepers and/or side stays.

Table 3 shows the maximum span length to achieve a ground clearance of 7 m for a conductor temperature of $15^{\circ} \mathrm{C}$. This clearance is achieved for foundation depths indicated in Table 2

Fig. 1 Definition of Wind Span and for conductor
fixing arrangements as shown in ESB drawings.

Table 3		Maximum span length to achieve $\mathbf{7 m}$ clearance for conductor temperature of $15^{\circ} \mathrm{C}$.					
Pole Height(m)		Pole duties for the $\mathbf{2}$ poles supporting the span					
		Pole 1	Pole 2	Pole 1	Pole 2	Pole 1	Pole 2
Pole 1	Pole 2	IMP or LAP	IMP or LAP	IMP or LAP	$\begin{aligned} & \text { MAP, HAP } \\ & \text { or EP } \end{aligned}$	$\begin{aligned} & \text { MAP, HAP } \\ & \text { or EP } \end{aligned}$	$\begin{aligned} & \text { MAP, HAP } \\ & \text { or EP } \end{aligned}$
10	10		04		96		
10	11		13		105		8
10	12		22		113		7
11	11		22		115		08
11	12		31		124		18
12	12		39		133		27

Data in Table 3 has been calculated for an equivalent span of 90 m .
Clearance requirements are described in detail in section 4.7 m ground clearance for conductor temperature of $15^{\circ} \mathrm{C}$ is required for overhead lines over fields and open ground. Higher clearance is required over roads and navigable waterways

Maximum span lengths to avoid clashing are included in Table 4.

	le Maximum span lengths to avoid clashing for conductor temperature of $50^{\circ} \mathrm{C}$.														
	Pole duties for $\mathbf{2}$ poles supporting the span														
Pole Duty 1:	IMP					LAP				MAP			HAP		EP
$\begin{aligned} & \text { Pole Duty } \\ & \text { 2: } \end{aligned}$	IMP	LAP	MAP	HAP	EP	LAP	MAP	HAP	EP	MAP	HAP	EP	HAP	EP	EP
Maximum Span (m)	115	114	87	83	91	118	92	87	95	95	91	99	86	94	102

Minimum pole sizes are shown in Table 5.

Table 5	Minimum Pole Sizes categorised by Pole Duty			
	Minimum pole top diameters (cm) for poles of height:			
Pole Duty	10 m	11 m	12 m	13 m
IMP, LAP or MAP	18 cm	18 cm	20 cm	20 cm
HAP, EP or BP	-	20 cm	20 cm	20 cm
Pole with equipment	-	22 cm	-	-

2.3 Erection Sag Charts

Conductors can be erected in accordance with design requirements by:

- Using a dynamometer to ensure the applied tension is in line with the requirements outlined in Table 6.
or
- Tensioning the conductor until the mid-span sag is in accordance with the erection sag table in Table 7. This data is also plotted in a chart in Fig. 2.

Table 6 Dynamometer Table for erection of $\mathbf{1 0 0} \mathbf{~ m m}^{2}$ ACSR

	Conductor temperature					
	$0^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$
Conductor tension at erection (kN)	6.4	6	5.5	5.1	4.7	4.3

Table $7 \quad$ Erection Sag Table 100 mm 2 ACSR

	Mid-span sag (m) for conductor at temperature:							
Span Length (m)	$\mathbf{0}^{\mathbf{}} \mathbf{C}$	$\mathbf{5}^{\mathbf{}} \mathbf{C}$	$\mathbf{1 0}^{\mathbf{}} \mathbf{C}$	$\mathbf{1 5}^{\mathbf{}} \mathbf{C}$	$\mathbf{2 0}^{\mathbf{}} \mathbf{C}$	$\mathbf{2 5}^{\mathbf{}} \mathbf{C}$	$\mathbf{3 0}^{\mathbf{}} \mathbf{C}$	
$\mathbf{5 0}$	0.15	0.16	0.17	0.19	0.21	0.24	0.27	
$\mathbf{6 0}$	0.21	0.23	0.25	0.28	0.31	0.34	0.38	
$\mathbf{7 0}$	0.29	0.32	0.34	0.38	0.41	0.46	0.51	
$\mathbf{8 0}$	0.38	0.41	0.45	0.49	0.54	0.59	0.65	
$\mathbf{9 0}$	0.49	0.53	0.57	0.62	0.68	0.74	0.81	
$\mathbf{1 0 0}$	0.61	0.66	0.71	0.77	0.83	0.90	0.98	
$\mathbf{1 1 0}$	0.74	0.80	0.86	0.93	1.00	1.08	1.16	
$\mathbf{1 2 0}$	0.89	0.96	1.03	1.10	1.19	1.27	1.37	
$\mathbf{1 3 0}$	1.06	1.13	1.21	1.30	1.39	1.48	1.58	
$\mathbf{1 4 0}$	1.24	1.32	1.41	1.50	1.60	1.71	1.81	
$\mathbf{1 5 0}$	1.44	1.53	1.62	1.73	1.83	1.94	2.05	

The Sag chart for $100 \mathrm{~mm}^{2}$ ACSR is shown in Fig. 2.

Fig. 2 Erection Sag Chart for $100 \mathrm{~mm}^{2}$ ACSR

$3.0150 \mathrm{~mm}^{2}$ AAAC

3.1 Conductor Data

The table below lists the main characteristics of $150 \mathrm{~mm}^{2}$ All Aluminium Alloy Conductor (AAAC), which ESB specify for 3-phase 20 kV networks.

Table 8 Conductor Data	
Description	Value
Codename	Mulberry
Overall Diameter	15.9 mm
Cross Sectional Area	$150.9 \mathrm{~mm}^{2}$
Stranding / Wire Diameter Aluminium	$19 / 3.18 \mathrm{~mm}$
Weight/km	$426 \mathrm{~kg} / \mathrm{km}$
Ultimate Tensile Strength	42.291 kN
Design tension	$12.81 \mathrm{kgf} / \mathrm{mm}{ }^{2}$
Target span	90 m
AC resistance at $65^{\circ} \mathrm{C}$	$0.245 \Omega / \mathrm{km}$
Shunt susceptance, B	$5.9 \times 10^{-6} \mathrm{~S} / \mathrm{km}$
Series reactance, X	$0.33 \mathrm{H} / \mathrm{km}$
Maximum conductor temperature	$65^{\circ} \mathrm{C}$
Thermal rating for maximum conductor temperature of $65^{\circ} \mathrm{C}$ at ambient air temperature of $5^{\circ} \mathrm{C}$	544 A
Thermal rating for maximum conductor temperature of $65^{\circ} \mathrm{C}$ at ambient air temperature of $25^{\circ} \mathrm{C}$	435 A
Short-circuit rating for initial conductor temperature of $65^{\circ} \mathrm{C}$ and short-circuit duration of 0.1 seconds	36.0 kA
Short-circuit rating for initial conductor temperature of $65^{\circ} \mathrm{C}$ and short-circuit duration of 1 seconds	11.4 kA
Short-circuit rating for initial conductor temperature of $65^{\circ} \mathrm{C}$ and short-circuit duration of 2 seconds	8.0 kA

Technical requirements for this conductor can be found in the latest edition of ESB Specification 16144, titled: "All Aluminium Alloy Overhead Conductor (AAAC) and associated connectors"

3.2 Mechanical Design Details

See Appendix 1 for details on pole duties such as IMP (Intermediate Pole), LAP (Light Angle Pole), etc. Maximum span length is determined by a number of factors including:

- Pole strength
- Foundation strength
- Required ground clearance
- Avoidance of clashing between phases

Maximum span lengths have been calculated for design conditions such as maximum conductor temperature and ambient conditions such as air temperature and wind speed. The results are summarised in the table below. The overhead line must be deigned so that span lengths are within limits set out in Tables 9, 10, 11 and 12.

Table 9	Maximum wind span for unstayed poles based on pole strength and foundation strength					
	Pole Type		Foundation Depth (m)	Maximum wind span based on pole strength	Maximum wind span for unstayed pole based on foundation strength	
Height (m)	$\begin{gathered} \text { Top } \\ \text { Diameter } \\ (\mathrm{cm}) \end{gathered}$	$\begin{aligned} & \text { ESB } \\ & \text { Material } \end{aligned}$ Code			Poor Ground	Average Ground
10	18	1212219	2	75	76	123
11	18	1212260	2.2	73	93	150
11	20	1212262	2.2	94	102	163
11	22	1212263	2.2	120	109	175
12	20	1213315	2.3	130	122	196
13	20	1213363	2.3	128	112	182
14	20	1213414	2.3	129	102	169

The ESB material codes for wood poles are included in Table 11. These codes can be used to obtain technical details for each pole size can be obtained from ESB specification 16196.

Loamy wet soil or loose sandy soil is considered to be poor ground for foundations. Ground consisting of clay or firm gravel provides average or better than average foundations. The wind span is the sum of half the span lengths the pole is supporting, as shown in Fig. 3. The Maximum wind span for poles planted in poor ground can be increased by installation of sleepers and/or side stays.

Table 10 shows the maximum span length to achieve a ground clearance of 7 m for a conductor temperature of $15^{\circ} \mathrm{C}$. This clearance is

Fig. 3 Definition of Wind Span achieved for foundation depths indicated in Table 9 and for conductor fixing arrangements as shown in ESB drawings.

Table 10		Maximum span length to achieve 7 m clearance for conductor temperature of $15^{\circ} \mathrm{C}$.					
Pole Height (m)		Pole duties for the $\mathbf{2}$ poles supporting the span					
		Pole 1	Pole 2	Pole 1	Pole 2	Pole 1	Pole 2
$\begin{gathered} \text { Pole } \\ 1 \end{gathered}$	$\begin{gathered} \text { Pole } \\ 2 \end{gathered}$	$\begin{aligned} & \text { IMP or } \\ & \text { LAP } \end{aligned}$	$\begin{aligned} & \text { IMP or } \\ & \text { LAP } \end{aligned}$	$\begin{aligned} & \text { IMP or } \\ & \text { LAP } \end{aligned}$	MAP, HAP or EP	$\begin{gathered} \text { MAP, HAP } \\ \text { or EP } \end{gathered}$	$\begin{aligned} & \text { MAP, HAP } \\ & \text { or EP } \end{aligned}$
10	10	107		100		94	
10	11	116		113		107	
11	11	124		119		114	
11	12	133		128		123	
12	12	142		137		132	
12	13	150		146		141	
13	13	159		154		150	
13	14	167		163		158	
14	14	174		170		166	

Data in Table 10 has been calculated for an equivalent span of 90 m .
Clearance requirements are described in detail in section 4.7 m ground clearance for conductor temperature of $15^{\circ} \mathrm{C}$ is required for overhead lines over fields and open ground. Higher clearance is required over roads and navigable waterways

Maximum span lengths to avoid clashing are included in Table 11.

Table 11			Maximum span lengths to avoid clashing for conductor temperature of $40^{\circ} \mathrm{C}$.												
	Pole duties for 2 poles supporting the span														
Pole Duty 1:	IMP					LAP				MAP			HAP		EP
$\begin{gathered} \text { Pole Duty } \\ \text { 2: } \end{gathered}$	IMP	LAP	MAP	HAP	EP	LAP	MAP	HAP	EP	MAP	HAP	EP	HAP	EP	EP
Maximum Span (m)	128	127	99	94	102	126	98	93	102	101	97	105	92	100	109

Minimum pole sizes are shown in Table 12.

Table 12		Minimum Pole Sizes categorised by Pole Duty			
	Minimum pole top diameters (cm) for poles of height:				
Pole Duty	10 m	11 m	12 m	13 m	
IMP	18 cm	18 cm	20 cm	20 cm	
LAP	-	20 cm	20 cm	20 cm	
HAP, EP, DEP or pole with equipment	-	22 cm	-	-	

3.3 Erection Sag Charts

Conductors can be erected in accordance with design requirements by:

- Using a dynamometer to ensure the applied tension is in line with the requirements outlined in Table 13.
or
- Tensioning the conductor until the mid-span sag is in accordance with the erection sag table in Table 14. This data is also plotted in a chart in Fig. 4.

Table 13 Dynamometer Table for erection of $150 \mathrm{~mm}^{2}$ AAAC

	Conductor temperature					
	$0^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$
Conductor tension at erection (kN)	10.3	9.4	8.5	7.6	6.8	6.1

The erection sag chart for 150 mm 2 AAAC is shown in Table 14.

Table 14		Erection Sag Table $150 \mathrm{~mm}^{2}$ AAAC					
	Mid-span sag (m) for conductor at temperature:						
Span Length (m)	$0^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$15^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$
50	0.13	0.14	0.15	0.17	0.19	0.21	0.24
60	0.18	0.20	0.22	0.25	0.27	0.31	0.34
70	0.25	0.27	0.30	0.33	0.37	0.42	0.47
80	0.32	0.35	0.39	0.44	0.49	0.55	0.61
90	0.41	0.45	0.50	0.55	0.62	0.69	0.77
100	0.50	0.55	0.61	0.68	0.76	0.85	0.95
110	0.61	0.67	0.74	0.83	0.92	1.03	1.15
120	0.72	0.80	0.88	0.98	1.10	1.23	1.37
130	0.85	0.93	1.04	1.15	1.29	1.44	1.61
140	0.98	1.08	1.20	1.34	1.49	1.67	1.87
150	1.13	1.24	1.38	1.54	1.72	1.92	2.15

The Sag chart for $150 \mathrm{~mm}^{2}$ AAAC is shown in Fig. 4.

Fig. 4 Erection Sag Chart for $150 \mathrm{~mm}^{2}$ AAAC

4.0 Clearances

4.1 Clearances Within the Span

Phase spacing at IMP and LAP cross-arms shall be at least 0.807 m .
Phase spacing at cross-arms supporting tension insulators shall be at least 1.02 m on 3-phase network.

All unearthed pole-top steelwork shall be at least 5.2 m above ground.
Phase to earth clearance shall be at least 0.22 m at cross-arm fixings.

4.2 Vertical Ground Clearance

Table 15 shows minimum vertical ground clearance to be achieved at erection with a conductor temperature or $15^{\circ} \mathrm{C}$.

Table 15 Vertical Ground Clearance Required for new Construction with conductor temperature of $15^{\mathbf{0}} \mathrm{C}$

Item	Terrain	$\begin{array}{c}\text { Clearance - } \\ \text { metres }\end{array}$	Comments
1	Fields	7	
2	Roads	7.5	$\begin{array}{l}\text { Position pole close to road } \\ \text { so that road crossing occurs } \\ \text { within the first 15m of the } \\ \text { span. }\end{array}$
3	Canals	7.5	$\begin{array}{l}\text { Position pole close to canal } \\ \text { bank so that canal crossing } \\ \text { occurs in the first 15m of the } \\ \text { span. Avoid subsidence } \\ \text { zone. }\end{array}$
4	$\begin{array}{c}\text { Railways - not } \\ \text { electrified }\end{array}$	7.5	$\begin{array}{l}\text { Position pole so that: } \\ \text { - At least } 1.5 \text { times its } \\ \text { installed height } \\ \text { separates it from the } \\ \text { railway line }\end{array}$
- Railway crossing occurs			
within first 15m of the			
span			

Table 15 (contd.) Vertical Ground Clearance Required for new Construction
with conductor temperature of $15^{\mathbf{0}} \mathrm{C}$

Item	Terrain	Clearance - metres	Comments
5	River Shannon	Varies	See ESB standard titled: "Waterway crossing 10l20\38kV overhead lines". This standard specifies clearance required and outlines other requirements such as fixing of warning signs and game-guards, obtaining a foreshore license, recording the crossing and notifying users of the waterway. See Appendix 4 for further details.
6	Other navigable rivers and designated water ways	Varies	(
7	Waterways not designated as navigable	This clearance applies to highest water level. Contact Waterways Ireland to find out designation of a specific waterway.	
8	Bord Na Móna Railways	7.5	
9	Bord Na Móna Machinery Routes	Height of machine $+2 m$	There must be 2m clearance above the highest load carried on the railway.
higher than tallest machine			
using the route.			
Ground clearance must be at			
least 6.5m.			

See Appendix 3 for design details on crossings and conflicts

An overhead line shall not be erected over sportsfields for rugby, GAA or other sports where tall goalposts and screens may be installed.

5.0 Electrical Design

5.1 Earths

Earths are only required where pole-mounted equipment such as reclosers, triple-pole switches, voltage regulators, auto-sectionalisers or surge arresters have been installed. Earths installed for such equipment shall have a resistance to earth not exceeding $20 \Omega .25 \mathrm{~mm}^{2}$ bare copper conductor shall be used as the earth conductor.

5.2 Switching Points

ESB Networks will specify switching points and switching duties required on the network being built.

5.3 Surge Arresters

Surge arresters shall be installed to provide lightning protection for any reclosers, triple-pole switches, voltage regulators, auto-sectionalisers, or poletop cable terminations installed on the network being built.

5.4 Voltage Regulator

ESB Networks will specify if a voltage regulator installation is required. A voltage regulator installation consists of two 1-phase regulators installed open delta, or three 1-phase regulators installed close delta. The installation requires by-pass switches to be installed on a pole on the backbone line. The by-pass switches feed the voltage regulators, which are installed on a wood pole portal structure close to the backbone line. A suite of construction drawings (ESB Reference: PG567-D021-312-012) are available

5.5 Auto-Sectionaliser

ESB will specify if any sectionalsiers are required. The sectionaliser is a remotely controlled 3-phase load-break fault-make switch that can be installed on a pole on the backbone line. Construction drawing (ESB Reference: PG567-D021-207-001-000) is available.

5.6 Triple-Pole Switch

ESB will specify if any triple-pole switches are required. The triple-pole switch is a manually operated 3-phase load-break fault-make switch that can be installed on a pole on the backbone line. Construction drawing (ESB Reference: PG567-D021-206-001-000) is available.

5.7 Recloser

ESB will specify is any reclosers are required. The recloser is a 3-phase faultmake fault-break circuit-breaker that can provide fault protection and can also be remotely controlled. The recloser is mounted on a pole on the back-bone line. Construction drawing (ESB Reference: PG567-D021-104-002-000) is available.

6.0 Pole numbering, Danger Notices, Bird Diverters and Network Records

6.1 Pole Numbering

Poles shall be numbered sequentially. The pole closest to the ESB HV station shall have the lowest number. Check with ESB for number to be applied to the first pole. Pole numbers shall be stamped onto an aluminium plate and fixed to each pole.

6.2 Danger Notices

Danger notices shall be fixed to every pole. See Appendix 6 for details of danger notices.

6.3 Bird Diverters

Bird diverters shall be installed on overhead lines at waterway crossings and where overhead network crosses recognised bird flight corridors. Bird diverters must be in accordance with ESB Specification16979.

6.4 Network Records

As-built record of the line must be returned to the ESB Networks Project Liaison at the time of commissioning. A line may not be switched in if the asbuilt records are not in order. The record should include the following:

* Detailed OSI (Ordnance Survey Ireland) map showing structure locations. Pole numbers on the map must correspond with numbers physically attached to each pole.
* Map must be of scale 1:1000, 1:2500 or 1:5000.
* The map shall include the following detail:
- Conductor type
- Pole numbers and pole type installed
- Details on any switching points
- Arrester installations
- Fuse installations, if any
- Earths installed
- Any other electrical equipment installed on the overhead line
- Network passing through forests where easements have been purchased
- Waterway crossings where license has been obtained from Waterways Ireland

Appendix 1: Pole Duties

Fig. 5 Pole duties - determined by the enclosed angle

Pole duties are determined by angle of deviation as shown in Fig. 5. Details are included in Table 16.

Table 16 Information of Pole Duties

Pole Duty		Enclosed Angle	Cross-arm	Insulators	Conductor
DEP	Double-End Pole	$\begin{gathered} 90^{\circ} \text { to } \\ 120^{\circ} \end{gathered}$	2 EP crossarms required	Tension Insulators	Conductors must be terminated
HAP	Heavy Angle Pole	$\begin{gathered} 120^{\circ} \text { to } \\ 140^{\circ} \end{gathered}$	Single crossarm bisecting the angle		
MAP	Medium Angle Pole	$\begin{gathered} 140^{\circ} \text { to } \\ 160^{\circ} \end{gathered}$			
EP	End Pole	-	Single crossarm		1 overhead span terminated at this pole
LAP	Light Angle Pole	$\begin{gathered} 160^{\circ} \text { to } \\ 180^{\circ} \end{gathered}$	Single IMP cross-arm bisecting the angle	Pin insulators	Conductors run through
IMP	Intermediate Pole	180°	Single crossarm		

Appendix 2: Staying Requirements

Fig. 6 Design Standards for stays

Stays are required for supporting:

- Angle poles
- Poles where the conductor has changed
- Poles with significant pole-top equipment
- Poles in poor foundations

Number of stays required depends on the pole duty and the conductor installed. See Table 17 for details.

Table $\mathbf{1 7}$ Stay requirements for Racoon and Mulberry 20kV Overhead Lines		
Pole Duty	Stays Required for Conductor Type:	
	Racoon	Mulberry
LAP	1	1
MAP	1	2
HAP	2	2
EP	2	2
DEP	3	3

The standard stay is designed for loading of up to 6.5 tonnes. Table 17 lists stay requirements for standard stays. There is a design available for a 13 tonne stay which can replace 2 standard stays.

Appendix 3: Crossings and Conflicts

There are design rules for a 20 kV line crossing:

- Another overhead power line
- An overhead phone line
- An electrified railway

There are also design rules for conflicts with:

- Buildings
- Wind turbines
- Public lighting columns
- Footbridges
- Vegetation

A3.1 Crossings

Table $18 \quad$ Crossings for erection of conductor at $15^{\circ} \mathrm{C}$

Crossing	Vertical Separation (m)	Comments			
Phone line	3	Phone line: \bullet Must be insulated •Must pass underneath the 20kV line See section A3.3 for further details			
LV line	2				
MV Line	2	$>3 \mathrm{~m}$			
38kV line	Request advice from ESB for each crossing		$	$	Complete BX254 form and send to ESBI
:---:	:---:				
Conflicts section					
(HVConflictSolutions@esb.ie)					

A3.2 Conflicts

Table 19 Horizontal clearances for crossings

Crossing	Horizontal Clearance (m)	Comments
Wind turbine	Height of installed turbine +20 m	Turbine height includes blade at highest point of its arc
Building	$1 \mathrm{~m}+$ height of pole	Network should be designed to meet this clearance. However, if this clearance is not possible to achieve, bsolute minimum horizontal clearance is 6m. See section A3.5
Public lighting		
columns	$1 \mathrm{~m}+$ height of public lighting column or the 20kV pole - whichever if the taller	Network should be designed to meet this clearance. However, if this clearance is not possible to achieve, clearance can be reduced if the line is constructed in accordance with the special requirements outlined in section A3.6
Footbridges	$1 \mathrm{~m}+$ height of pole	Green PVC conductor must be installed on span in close proximity to the footbridge
Vegetation	4m radius	See section A3.7 for further details

A3.3 Phone Lines

A3.3.1 Crossings

Fig. $7 \quad 20 \mathrm{kV}$ line crossing a phone line

Basic requirements for a 20 kV line crossing a phone line are:

- Span length must be in the range 40 m to 70 m
- Poles can be any duty, but must be one size heavier than required for standard design
- Vertical separation between the phone line and the 20 kV line must be at least 3 m
- The 20 kV line must be above the phone line
- Phone line must be insulated
- Use green PVC conductor for the crossing span in the 20 kV line
- Crossing angle must be at least 45°, and preferably 90°.
- There must be no joints in the crossing span
- Bare 20 kV conductors must be at least falling distance from the phone line, which is defined as greater of:
o $\mathrm{H}+1$, where $\mathrm{H}=$ height of 20 kV pole
o $1.5^{*} \mathrm{~h}$, where $\mathrm{h}=$ height of pole on phone line
- Stays must be installed on 20 kV poles within falling distance of the phone line. There must be at least 3 m horizontal clearance between 20 kV poles and poles on the phone line. Regard 20 kV pole stay above the insulator as part of the live network when calculating this clearance.

A3.3.2 Approaches

There are also restrictions for 20 kV lines approaching (but not crossing) within 25 m of a phone line. These restrictions are:

- 20 kV network cannot be within 5 m of a phone line. Regard 20 kV pole stay above the insulator as part of the live network when calculating this clearance. The stay insulator must be at least 4.2 m above ground
- For 20 kV network within the falling distance but more than 5 m from the phone line:
o Stay all poles away from the phone line
- For 20 kV network within 25 m of the phone line but outside the falling distance:
o Green PVC conductor must be used and terminations insulated if the phone line is uninsulated. This requirement does not apply if the phone line is insulated.

A3.3.3 Parallel Runs

Under fault conditions, 20 kV overhead lines may induce over-voltages in phone lines running parallel to the overhead network. Calculation below shows limits for 20 kV network with earth fault currents of up to 500A.

Table 20 Maximum Parallel run between 20 kV overhead line and phone line

Separation (m)	15 m	30 m	60 m	100 m	200 m
Length of Run (m)	$2,200 \mathrm{~m}$	$3,100 \mathrm{~m}$	$3,400 \mathrm{~m}$	$4,000 \mathrm{~m}$	$4,800 \mathrm{~m}$

Fig. 8 Parallel run between 20kVpower line and a phone line

A3.3.4 Earth Separation

Earthing on the phone line must be separated from power earths installed for equipment on the 20 kV network. Separation distance in Table 21 applies to point nearest approach between the two earthing systems.

Table 21
Minimum separation between 20 kV earths and phone line earths

	Separation from phone line earths	
$20 k V$ earth	Normal Soil	Rocky Soil
$0-20 \Omega$	10 m	15 m

A3.4 Overhead Power Line

Fig. 9 MV power line crossing an LV power line

Fig. 10 Plan view of 20 kV line crossing an $L V$ line

Fig. 9 shows sketch of 20 kV line crossing an LV line. This crossing is shown in plan view in Fig. 10 where terminology describing is defined, including crossing angle, lateral clearance and clearance of the 20 kV pole to the LV line. This terminology also applies for a 20 kV line crossing a second line operating at 20 kV or above.

Requirements for a 20 kV line crossing an LV line include:

- $\quad 20 \mathrm{kV}$ line must be above the LV line and must have vertical separation of at least 2 m when erected with a conductor temperature of $15^{\circ} \mathrm{C}$.
- Crossing should take place within in the first 20% of both spans
- Bare MV conductors must be at least 12 m from bare LV conductors
- If the LV conductor is bare, then green PVC conductor must be installed in the crossing 20 kV span. Green PVC conductor is not essential if the LV conductor is insulated. However, it is preferred.

Table 22 New Construction requirements for 20kV line crossing a second power line operating at LV, MV, $38 \mathrm{kV}, 110 \mathrm{kV}, 220 \mathrm{kV}$ or 400 kV

20kV Line Crossing:	Crossin Crossing Angle	Minimum Lateral Clearance	Minimum Horizontal Clearance between 20kV line \& Structures of second line	Minimum Vertical Separation between 20 kV conductors and conductors of second line	Fill out BX254 Form?	$\begin{aligned} & \text { Send BX254 } \\ & \text { form to } \end{aligned}$
LV	45°	3 m	5 m	2 m	No	
MV		3 m	5 m		No	-
38kV	30°	5 m	9 m	Individually assessed	Yes	38kV Design, Network Projects
110kV		15m	10m	Individually assessed	Yes	Conflicts \& Arbitrations Section, ESBI
$\begin{gathered} 220 \mathrm{kV} \\ \text { or } \\ 400 \mathrm{kV} \end{gathered}$	Individually assessed				Yes	Conflicts \& Arbitrations Section, ESBI

For 20 kV network crossing a 10 kV or 20 kV line:

- Circuits must not share the same pole
- Crossing must occur with first 20% of both spans
- The second line must be below the 20 kV network if it is operating at 10kV

If the 20 kV network is crossing a power line operating at 38 kV or above, the 20 kV line must be below the higher voltage line.

Crossings of 38 kV networks and above must be individually assessed. It is necessary to enter details of the crossing into form and send it to:

- 38 kV Design, ESB Networks for 38 kV crossings. (Your local ESB contact shall be able to advise you)
- Conflicts \& Arbitrations Section in ESBI for crossings of 110 kV and above. Details can be emailed to: HVConflictSolutions@esb.ie.

Copies of the BX254 form can be obtained from ESB Networks.

A3.5 Building Conflict

Fig. 11 Clearance of $\mathbf{2 0 k V}$ from buildings

If at all possible, horizontal clearance between a 20 kV line and building must be at least height of pole +1 m . However, in exceptional circumstances, where this clearance cannot be achieved, the absolute minimum horizontal clearance is 6 m .

Definition of buildings for this standard includes:

- Dwellings, offices and institutions
- Warehouses, factories, churches and public buildings
- Farmyard buildings, oil tanks and silos
- Fixed caravans, mobile homes and site offices
- Scaffolding during construction
- TV aerials antennae and advertising signs
- Metal roofed hay barns

A3.6 Public Lighting Conflicts

Fig. 12 Clearance between 20 kV lines and public lighting columns

If at all possible, 20 kV lines should be erected outside of the falling zone of public lighting columns.

Falling zone is defined as the greater of:

- Height of 20 kV pole +1 m
- Height of public lighting column $+1 m$

If this clearance cannot be achieved, absolute minimum horizontal clearance between the 20 kV line and the public lighting column is 5 m .

If the 20 kV line is within the falling zone, green PVC conductor must be installed for the 20 kV span in close proximity to the public lighting column.

A3.7 Vegetation

The following clearances must be achieved from trees and hedges:

- There must be no overhanging branches over the 20 kV line
- There must be a radial clearance of at least 4 m from trees and hedges
- Remove trees in poor condition that are within falling distance of the 20 kV line
- Clear vegetation at switching points to allow safe access and operation
- 20 kV line crossing through a forest requires a 20 m tree-exclusion corridor.

Appendix $4 \quad$ Waterway Crossings

Line crossings of waterways are not confined to lines that actually cross over from one side to the other of a waterway. They also include lines that exist above a waterway but do not actually cross over. Such lines may pass over a bend or a bulge in an irregular shaped shore-line.

Designated Waterways include:

- All of the tidal shoreline of Ireland up to the high water mark.
- Rivers and inlets as set out in the Dept of Communications, Marine and Natural Resources list of 1995.

Specified inland waterways are those waterways managed by Waterways Ireland:

- The river Shannon and its Maigue, Fergus, Owenogarney tributaries.
- The Erne Waterway
- The Barrow Waterway
- The Grand and Royal canals
- The Corrib river and lake (separate trustees).

See website www.waterwaysireland.org. Crossing of a specified inland waterway manged by Waterways Ireland requires a license issued by Waterways Ireland.

Waterway crossing should be avoided if at all possible. If waterway crossing of a designated or specified waterway is essential, procedure is as follows:

- Minimum vertical clearance as shown in Table 23
- Installation of covered conductor - such as green PVC conductor for the crossing span
- Provision of warning notices visible 100 m from the 20 kV line for sailors in mid-channel; of the waterway. This may sometimes require the signs to be erected on supports independent of the crossing poles themselves
- Installation of bird diverters on the crossing span, which will also improve line visibility for sailors
- Report waterway crossing to the UK Hydro-graphic Office. They will update the Admiralty charts/maps. In this way, the charts used by navigators will give them advance notice of line crossing locations.
- Report the location and vertical clearance of each crossing to all interested parties, such as the Department of the Marine, Port Authorities, sailing clubs, etc.

See ESB document titled: "Waterway Crossing Standard for LV \& 10/20/38kVOverhead Lines" (ESB reference: DTIS-280705-BQD) for further

Fig. 13 Waterway crossing
details.

Table 23 Vertical clearance above high water level for conductor erected at $15^{\circ} \mathrm{C}$

Risk Category	Description	Vertical Clearance (m)
High	Crossings assessed to be at risk of inadvertent contact due to leisure sailing activities, etc.	11.6
	Crossings over the river Shannon are as agreed with the appropriate authorities	13.1
	Crossings of individually specified known navigable routes or seaways with higher risk of contact where the clearance required "G" has been advised by the Minister or other appropriate authority	$\mathrm{G}+1.5$
	Crossings assessed to have low risk of contact due to navigation.	7.5
Low	Crossings assessed to have no risk of contact due to navigation.	7

Appendix 5 Danger Notices

There are new mandatory requirements for the shape and designed of danger notices used on ESB networks since 1st November 2007 when the Safety Health and Welfare at Work regulations (2007) came into force.

These regulations stipulate that danger notices must comply with EU standards. Safety signs must use a combination of shape, colour and symbol or pictogram to maiximise likelihood of person understanding its meaning regardless of their literacy or language ability. Text must not be included in the sign, but can be included in a supplementray sign which can be displayed in a addition to the safety sign. In Gaeltacht areas, text in acompanying signs must be in Irish.

Fig. 14 ESB Danger signs complying with new regulations

ESB specification 16163 outlines requirements for ESB danger notices.

Appendix 6 List of Material Specifications

All materials used by builders of contestably built lines must be in accordance with the relevant ESB Specification. In many cases a single specification will reference numerous other ESB specifications and international standards. It is the responsibility of the builder to ensure that the materials sourced by them are in compliance with all these specifications / standards.

ESB Networks ensures that the materials procured are of a high quality and are in full compliance with our specifications. A similar standard of quality will be expected from builders of contestably built lines. Builders will be required to keep records of type testing, sample testing, quality assurance, health \& safety and environmental data as set out in ESB specifications.

ESB Networks can not supply materials to builders of contestably built lines. The builder must source these materials directly.

In the event of materials being sourced from another supplier, ESB inspectors will wish to satisfy themselves of the suitability of the alternative sources and materials including material type testing and assessment of the quality assurance regime in operation at the manufacturing plant. This will involve visits to manufacturing/testing locations and conducting inspection/tests on delivered consignments.

A list of materials specifications associated with 20 kV lines is set out in the following page.

Item	Material Description	ESB Specification
1	Stranded Galvanised Steel Stay Wire	16129
2	Aluminium Tension Connectors	16141
3	Galvanised Insulator Pins	05117
4	38 kV and MV Insulator fittings	16370
5	Hot Dip Galvanising of Iron and Steel articles other than wire	05030
6	Creosoted Wood Poles	16196
7	Small-woods	16111
8	$38 k V$ \& MV Conductors	$16144 \& 16374$
9	MV Triple Pole Switches	16354
10	Aluminium Tap-off Connectors	16143
11	Straight Through Non-Tension Connectors	16130
12	Tension/String Insulator units for lines up to 42kV.	16348

Item	Material Description	ESB Specification
13	Copper Connectors Tension \& Tap-off for 38kV, MV \& LV Lines	16148
14	Preformed Helical Ties for Dist OH Lines	16195
15	Helical Stay Grip Dead-ends	16170
16	Helical Distribution Dead-ends \& Accessories	16145
17	Remotely Operated Pole Switches MV \& 38kV	16360
18	Yellow Plastic Stay Markers	17019
19	Aerial Warning Spheres	16979
20	Galvanised Steel Twisted Links	05116
21	Compression fittings and dies for ACSR/AAAC conductors	16501
22	General Specification for Galvanised Steelwork	05115
23	$20 k V$ Inland Pin Insulators	16121
24	$20 k V$ Coastal Pin Insulators	16133
25	$20 k V$ Tension Insulators	16349
26	$20 k V$ Surge Arresters	16347
27	$20 k V$ Stay Insulators	16339
28	$20 k V$ pole-mounted fuse isolators \& disconnects	16367
29	$20 k V$ Recloser	16355
30	Signs, Labels \& flags for danger, warnings plus asset numbering.	16163
1		

[^0]: Copyright - all rights reserved: No part of this Specification may be altered or incorporated into another document without permission in writing from ESB Specifications Manager.

